磷酸三乙酯|阻燃剂TEP|亚磷酸三苯酯|抗氧剂、稳定剂TPPi|磷酸三苯酯|阻燃剂TPP|磷酸三2-氯丙基酯|阻燃剂TCPP
   
联系我们

联系人: 邵君( 先生,国内国际部经理 )
电话: +86-0512-58961066
传真: +86-0512-58961068
手机: +86-18921980669
E-mail: sales@yaruichem.com
地址: 江苏省张家港市杨舍镇东方新天地10幢B307
Skype: yaruichem@hotmail.com
MSN: yaruichem@hotmail.com
QQ: 2880130940
MSN: yaruichem@hotmail.com Skype: yaruichem@hotmail.com QQ: 2880130940

当前位置:首页 > 行业新闻 > 高固含量聚氨酯用扩链剂

高固含量聚氨酯用扩链剂

来源:邵君( 先生,国内国际部经理 ) 发布时间:2017-4-13 22:59:19
以聚(四氢呋喃-co-氧化丙烯)二醇(Ng210)和异佛尔酮二异氰酸酯(IPDI)为原料,以1,2-二羟基-3-丙磺酸钠(DHPA)为高固含量聚氨酯用扩链剂制得了高固含量聚氨酯乳液。

分析了高固含量聚氨酯用扩链剂DHPA含量对乳液及胶膜性能的影响。

结果表明:随着高固含量聚氨酯用扩链剂DHPA含量的增大,胶粒平均粒径逐渐减小,多分散性变窄,固含量不断增大,当DHPA含量为6%时,乳液的固含量最高达59%。;随着DHPA含量的继续增大,胶膜的拉伸强度逐渐增大,断裂伸长率先增大后减小,而胶膜的热稳定性没有明显变化。

浇注成型的聚氨酯的制备成型工艺有一步法、预聚体法和半预聚体法。

熊玉竹等采用10μm短切玻纤通过双螺杆挤出机制备了PA6/SGF,并研究了PA6/SGF的缺口拉伸性能和短切玻纤的增强机理。结果表明:在0.1~500 mm/min实验速度内,PA6/SGF的拉伸断裂功主要消耗在裂纹萌生过程。一旦裂纹源尺寸达到临界值,裂纹瞬间扩展。拉伸位移随着拉伸速度的增加而降低,拉伸应力最大值随着拉伸速度的增加先提高后降低。当拉伸速度达到300 mm/mim后,拉伸应力最大值和拉伸位移急剧下降,导致拉伸断裂功大幅度下降。

PA6/SGF的缺口拉伸断面主要分为裂纹萌生区及裂纹扩展区,基体的塑性变形主要集中在裂纹萌生区,剧烈的塑性变形可使基体出现明显的孔洞。在裂纹扩展区,裂纹的快速扩展导致基体断面平坦,且由于SGF的阻碍作用,基体呈现断裂分层现象。

长玻纤增强粒料指的是纤维单向排布的粒料,其纤维长度与粒料长度相等,一般大于5 mm。纤维长度增加,则纤维拔出消耗更多的能量,故有利于冲击强度的提高。另外纤维的端部是裂纹增长的引发点,长纤维端部的数量少,也使冲击强度提高。

长玻纤增强PA6的强度、模量、耐冲击性、耐蠕变性、耐疲劳性及耐磨、耐热性都比短玻纤增强PA6有很大幅度的提高。A Gullu等通过注塑成型,采用硅烷改性长玻纤(6 mm)增强PA6,研究了增强纤维用量及注射参数对材料力学性能的影响。通过实验发现:材料力学性能的提高与纤维的质量分布情况和纤维断裂无关。而材料的拉伸强度与进料口温度成正比,与注射速度和螺杆转速成反比。

杨小燕等采用双螺杆挤出机作为聚合反应器,研究了反应挤出玻纤增强PA的性能,采用偶联剂处理后的玻纤增强PA后,反应的转化率、材料的力学性能均有一定的提高。



4,4'-双仲丁氨基二苯基甲烷(MDBA)产品用途

4,4’-双仲丁氨基二苯基甲烷-MDBA可应用于硬泡、软泡、涂料、胶粘剂、密封剂、弹性体、典型的使用量为多元醇的1-5%。4,4’-双仲丁氨基二苯基甲烷-MDBA还可应用于喷涂聚脲、及多种用于金属和混凝土修补的化合物。

软泡:大块泡沫 - 在标准的TDI和高回弹泡沫组合料中,加入3-5php的4,4’-双仲丁氨基二苯基甲烷-MDBA可以提高泡沫的拉伸强度、撕裂强度和承载性能,在多数情况下,这些优点在降低泡沫密度得以实现在聚酯泡沫中,同样比例的4,4’-双仲丁氨基二苯基甲烷-MDBA可以显著提高撕裂强度和承载性能,而不影响泡沫的其他性能。冷模塑泡沫 - 在商业应用中已经证实,加入1-2php的4,4’-双仲丁氨基二苯基甲烷-MDBA 可降低密度、软化泡沫,从而使泡沫性能得以优化。还可以增强拉伸强度、撕裂强度和延伸率,缩短脱模时间。

硬泡:聚氨酯硬泡  – 在有水或无水硬泡体系中使用3-5php的4,4’-双仲丁氨基二苯基甲烷-MDBA, 可明显提高泡沫的压缩强度及尺寸稳定性,同时降低易脆性,提高闭孔率,降低导热系数。聚异氰脲酸酯硬泡 - - 在系统中加入5php的4,4’-双仲丁氨基二苯基甲烷-MDBA可以提高压缩强度100%,在高比例水发泡或全水发泡中,尺寸稳定性显著改善。

涂料/胶粘剂/密封剂/弹性体:涂料 - - 4,4’-双仲丁氨基二苯基甲烷-MDBA可用于TDI和MDI的涂料的室温熟化.配合适当的催化剂共熟化剂,可以生产用于喷涂、浇铸法的组合料系统。用4,4’-双仲丁氨基二苯基甲烷-MDBA作熟化剂的配方,可以提高粘着性和表面质量。

胶粘剂 - 4,4’-双仲丁氨基二苯基甲烷-MDBA使得基层更好地润湿,熟化后的聚合物与涂敷的表面更好地粘着。硬弹性体- - 4,4’-双仲丁氨基二苯基甲烷-MDBA可用于MDI半预聚物的熟化,以生产一系列硬度高的弹性体。

软弹性体 – 使用4,4’-双仲丁氨基二苯基甲烷-MDBA 作熟化剂可以延长釜中寿命,从而生产用作工业密封材料的软弹性体。


刘正军等采用一种新的熔融浸渍工艺制备了长玻纤增强PA6复合材料,研究了玻纤含量和长度分布情况对复合材料力学性能的影响。在玻纤质量分数为50%时,复合材料的拉伸强度为234 MPa,弯曲强度为349 MPa,弯曲弹性模量为11.4 GPa,缺口冲击强度为313 J/m,综合力学性能明显优于短玻纤增强PA6复合材料。

晶须是具有一定长度的纤维状单晶体,属于非连续纤维。晶须的直径小、长径比大。它们是在特殊条件下以单晶形式生长形成的纤维,具有有序的原子排列,内部几乎不存在缺陷,因而具有很高的强度,是一种高性能增强材料。

J Shi等分别采用两种硅烷偶联剂(KH550,KH560)处理的四针状氧化锌晶须(T-Zn Ow)对PA6进行改性。偶联剂的作用是使晶须与基体的结合更加牢固。用6%的KH550处理T-Zn Ow,将15%处理后的T-Zn Ow与PA6进行复合时,材料的冲击强度

达到最大值8.5kJ/m2。偶联剂的类型、用量以及体系中晶须用量对材料的力学性能有一定影响,未处理晶须的冲击强度与晶须用量成反比。

T-Zn Ow的增强机理为:氧化锌晶须从基体中拔出需吸收大量能量,其中一针断裂后其他三个针仍具有锚栓作用,晶须周围聚合物基体在晶须拔出过程中产生应力屈服。

Li等通过原位聚合的方法将氮化硅晶须(SNW)与PA6复合,得到了氮化硅增强的PA6复合材料(PA6/SNW)。由于氮化硅可以水解生成氨基,进而与己内酰胺分子中的羧基发生接枝反应,故无需外加接枝剂。随着晶须用量的增加,复合材料的力学性能有一定提高。

文章版权:张家港雅瑞化工有限公司

4,4'-双仲丁氨基二苯基甲烷(MDBA)  http://www.yaruichemical.com